If it's not what You are looking for type in the equation solver your own equation and let us solve it.
58j=-28-4j^2
We move all terms to the left:
58j-(-28-4j^2)=0
We get rid of parentheses
4j^2+58j+28=0
a = 4; b = 58; c = +28;
Δ = b2-4ac
Δ = 582-4·4·28
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-54}{2*4}=\frac{-112}{8} =-14 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+54}{2*4}=\frac{-4}{8} =-1/2 $
| 2(2b-5b)-9=-3 | | 2/3x-1=9-1/6x= | | 12=3f | | 40k^2-392k-80=0 | | x+12=35-(x+12) | | 1+5w+5-7w=22 | | 9=1/3m+15 | | 180=3x-82+166 | | 6h^2+68h+22=0 | | 5x+2+10x-3+7x-11+8x-19+13x-31=540 | | 1-8n=-7n | | 3x+47/5=28 | | 10(w+1)=90 | | 54+8p=6(p-4) | | 32m^2-80m+50=0 | | -1/8z+3=-5 | | 2(5x−5)= 40 | | x=π | | −0,2a+12=−19 | | 20f^2-110f+90=0 | | 45/360=x/2π3 | | 54+8p=6(2p-21) | | 3(2x-6)+2x=x-2(3x-4) | | 45/360=x/2π | | 180=2x-38+148 | | 11x^2+6x+7=0 | | 2r-4=-10 | | 5x=5=4 | | 10+7k=8k | | 7=3x-5+5-7 | | 7/9xX=560 | | 6d-6d+2d-2d=12 |